
Approach of a UML Profile for Berkeley Open

Infrastructure for Network Computing (BOINC)

Christian Benjamin Ries

Computational Materials

Science and Engineering (CMSE)

University of Applied Sciences

Bielefeld, Germany

www.visualgrid.org

Christian Schröder

Computational Materials

Science and Engineering (CMSE)

University of Applied Sciences

Bielefeld, Germany

Christian.Schroeder@fh-bielefeld.de

Vic Grout

Centre for Applied

Internet Research (CAIR)

Glyndŵr University, United Kingdom

v.grout@glyndwr.ac.uk

Abstract—Despite the current enormous hype and popularity
of Grid Computing environments like Amazons EC2 or Mi-
crosoft’s Windows Azure , there exist open-source and free of
cost software frameworks which allow to create high performance
computing installation by means of Public Resource Computing
(PRC). One PRC framework is BOINC (Berkeley Open Infras-
tructure for Network Computing) for solving large scale and
complex computational problems. Each computer works on its
own workunits independently from each other and sends back its
result to a project server. Installing, configuring, and maintaining
a BOINC based project however is a highly sophisticated task.
Scientists and developers need a lot of experience regarding the
underlying communication and operating system technologies,
even if only a handful of BOINC related functions are actually
needed for most applications. In this paper we present a Unified
Modeling Language (UML) profile for BOINC called Visu@lGrid
profile (VGP). A BOINC project installation for one or more
hosts, a role-based access control, and modeling of scientific
application is feasible by use of VGP. Based on our approach
we provide a specification that allows the creation of BOINC
projects with less development and implementation effort.

Keywords—BOINC, UML, Profile, Stereotypes, Tag-Values

I. INTRODUCTION

P
Ublic Resource Computing (PRC) technologies allow

realising low-cost high-performance computing projects

in certain application areas. Berkeley Open Infrastructure for

Network Computing (BOINC) is a very prominent framework

based in the principles of PRC and is based on a server-client

communication infrastructure mechanism. Here, the client re-

trieves a project specific application from the server along with

so-called workunit (WU), i.e. a number of parameter usually

provided in data files of simple ASCII or binary format that

are optionally needed by the application to perform specific

tasks. Each BOINC project (BP) has its own infrastructure, i.e.

few daemons, tasks, hosts, and scientific application (SAPP)

for different target platforms.

This paper presents a Unified Modeling Language (UML)

profile for Visu@lGrid (VG), called Visu@lGrid profile

(VGP). VG is a research project with the goal to have speci-

fications and definitions how to create a BP within a Model-

driven engineering (MDE) process and graphical elements.

This project is funded by the German Federal Ministry of Education and
Research.

This is the reason why we call it visual. VGP is used as

a core specification which makes it possible to create UML

models for a complete BP set-up with all components for a

fully predictable infrastructure to have the possibility to use

code-generation (CG) facilities. We show an approach which

makes it possible to define how a BP will be installed on

different ranges of unlimited count of hosts. Furthermore,

we will show how to configure a complete role-based access

control (RBAC) for different software components and system

functionalities, e.g. database access or log-in on one host.

There exists some promising RBAC approaches which will

be adopted by VGP [4]. We have already presented a first

modeling domain-specific language (DSL), i.e. textual and

graphical model elements [11]. Additional, we have shown

that only a handful BOINC functions are necessary to create

a complete usable BP.

The remainder of the paper is organised as follows. Section

2 gives an overview of BOINC’s problem domain. Next,

Section 3 describes the UML modeling principles and which

UML extensions are defined for VGP. In Section 4 some open

tasks and research questions are refereed which we will focus

on in additional work. Finally, Section 5 concludes this paper.

II. BOINC: USAGE AND CHALLENGES

BOINC is based on a simplified architecture, i.e. each task

is separated in autonomous running applications like BOINC

daemons or scripts and we call these BOINC services (BS).

In fact, few steps allow to create a new BP: (1) download

and install prerequisite software packages, (2) download the

BOINC sources, (3) configure and build the BOINC software,

and (4) call scripts for an automatic rudimentary and not really

usable BP installation process [19]. Next, you can modify each

part of your new BP, e.g.

• which and where BS should be executed, i.e. in case more

than one hosts are used it is possible to define specific

BS’s should be executed with different or same start-up

parameters on individual hosts,

• if a database uses a replication for read-only queries to

speed-up BP’s performance,

• which host has the main installation, i.e. if individual

hosts are used on server-side, then one host has the BP



Fig. 1. Client and server components of BOINC’s infrastructure

installation and has to distribute it to supplementary hosts.

More detailed adjustments are possible. As in [11] mentioned,

there exists typical errors that can occur due to manual editing

of the BOINC server configuration files. As a consequence

of these errors one can expect a significant effect on the

system’s integrity and application performance. In practice,

wrong configured BS’s do not work correctly, i.e. a BOINC

Assimilator (BA) will not store results for later use or a

BOINC Validator (BV) is not able to validate results received

by participants.

On one hand if only one host is planned to use, it could be

an uncomplicated proceeding from download of the BOINC

sources to a running BP. In this case, all work is done on one

host, i.e. BOINC sources could be accessed directly, BS’s must

be started on this host, database and web-server installations

are also directly available, and only for this host relevant

values are added to BOINC’s configuration. Additionally, only

one network interface card (NIC) is necessary to be configured

and exclusive ports of Hypertext-Transfer Protocol [Secure]

(HTTP[S]) must be allowed for network traffic. On the other

hand it could be an enormous challenge to set-up a BP

with more than one host and when daemons, tasks, database

and web-server installations are distributed for execution to

individual hosts. First established BP - Seti@Home (SAH),

which is one of the most driven BP - has minimum count

of 13 hosts on server side, and each host has a different

functionality1. SAH has three databases2 (DB) on respective

host, and each DB has a different purpose but it is necessary

that all BS’s can interact with them.

A. Special Interest Groups and Architecture

Different special interested groups could administrate one

BP, i.e. “administrators” configure and maintain the system

installation, and “scientists” could create new WU’s and add

new SAPP versions. SAPP’s could be implemented in different

ways, e.g. scripts, hand-written code in different programming

languages (C/C++ and Phyton are supported by default), or we

can use ISV (Independent Software Vendor)-Applications or

legacy applications [3], [7], e.g. in [10] we implemented a

wrapper to handle COMSOL Multiphysics [5] computations

on one computer. To a greater extent, an application can be

1http://setiathome.berkeley.edu/sah_status.html - accessed 22.05.2011
2Components of SETI@home: (1) BOINC master database which is the

BP back-end database, (2) BOINC replica database for read-only access, and
(3) SETI@home science database to store results.

written from scratch. This approach is the most difficult of all

and fortunately BOINC’s application programming interface

(API) is not changing frequently with a new version. Fact

is, one can show that only 23 different BOINC functions

are necessary to implement a successfully running research

relevant distributed SAPP [11]. We have to note, that we do

not mention something about new target devices which could

be implemented with additional application logic or extended

functionalities, e.g. to support graphics processing units (GPU)

with the help of BOINC’s API. When a BP is installed and a

SAPP is implemented, new problems and questions will arise:

• How can you manage errors or how is it possible to

upgrade one SAPP during runtime?

• How could we replace software components on particular

hosts or a whole host itself with same functionalities?

• How could we restrict access to groups of users and only

for selected functions and system facilities?

Mentioned steps could be executed on different hosts, and it is

highly error-prone to install and configure all required software

components and interface settings and to keep an always valid

configuration and stable system when for example software

has to upgrade or a host has to be replaced. In addition, it is

too cumbersome to create a fast and easy to use BP, just only

for tests or quality assurance processes.

B. Proceeding

As seen on the left hand side of Fig. 1, participants need

to download the BOINC Manager3 (BM), register for one or

more BP’s, and let the BOINC Client (BC) organizes all sys-

tem calls, in-/output handling, allocating compute resources,

so-called scheduling [1] and handling of communication mes-

sages to and from individual BP’s.

Fact is, with a minimum of five different BOINC daemons

it is feasible to start-up a fully operable BP. Fig. 1 shows

on the right hand side these five daemons with an optional

sixth one. Scheduler is the interface for participant requests

and supports two kinds of requests: (1) to send out WU’s, and

(2) to handle with computation results [1], [6]. Frequently,

the shared-memory (SHM) based queue for schedule requests

is refilled by the Feeder. File Deleter will keep the DB and

file system clean of expired or not longer needed datasets and

files. Lifetime of WU’s is tracked by the Transitioner and this

makes it necessary that all BS’s have access to BOINC DB’s,

i.e.

• when an user creates WU’s, information about these

WU’s are stored within BOINC’s DB and they are marked

as not yet processed,

• a request to the Scheduler will select few WU’s and will

change the state of these WU’s to processing,

• after this request, different proceedings are possible: (1)

each WU has a time-slot in which they should proceed

and when time-slots upper limit - so-called deadline - is

reached this WU will be marked as out of date and could

be transmitted to participants again or will be deleted

3A GUI to handle all BP’s where volunteers are registered.



later4, and (2) WU’s are returned inside time-slots and

the Scheduler will mark them in BOINC DB’s as ready

for validation,

• the BV will validate the result and mark each WU result

as valid or invalid, and

• the BA will store valid and/or invalid results in an

additional DB or within the file system hierarchy and

mark assimilated WU’s as finished and ready for deletion.

In Fig. 1 it could be seen, that each daemon needs a valid

configuration to access BOINC’s DB. Furthermore, a lot of

knowledge is required to define runtime parameters of each

daemon. Default values are fine, but in some cases it is more

valuable to define various parameter sets, e.g. if load-balancing

is necessary to increase server capacity. A file is used to

define which SAPP’s are offered by one BP. In addition, this

file contains information about planned or supported target

platforms, e.g. windows_intelx865 or x86_64-pc-linux-gnu6.

Definitions in this file are not strict, it is necessary to have a

SAPP within BP’s file hierarchy, otherwise not used platforms

are unrelated to SAPP’s.

III. UML PROFILE: VISU@LGRID

UML profile is a kind of UML extension mechanism [4],

[15]. It specializes some of the language elements, imposes

new restrictions on them while respecting the UML metamodel

and leaving the original semantics of the UML elements

unchanged. Icons and symbols can be specified and applied

for these specialized elements. The Object Management Group

(OMG) maintains some common and widely accepted pro-

files, such as Systems Modeling Language (SysML) [16]

and UML profile For Modeling and Analysis of Real-Time

and Embedded Systems (MARTE) [17]. Stereotypes extend

standard UML metaclasses. Furthermore, we can exchange

UML models with the XML Metadata Interchange (XMI)

language from one integrated development environment (IDE)

to another.

UML profiles are defined in terms of three basic mecha-

nisms: stereotypes, tagged values, and constraints. A stereo-

type defines how an existing metaclass may be extended. A

tagged value is an additional meta-attribute, it could be seen

as a variable. It has a name and a type, and is member

of a specific stereotype. Constraints can be associated with

stereotypes, they could be informal in plain-text or more

specific defined with Object Constraint Language (OCL) [18].

OCL is part of the UML, and is used to express constraints

and properties of model elements. Currently, only informal

constraints are defined for VGP, because a high effort for

implementation is needed to realize a fully support for all

VGP requirements.

Most of the current OCL tools are academic tools and were

developed by a team of a single university [2]. Although the

quality of tools has improved considerably over the last years,

4This behavior depends on sets of parameters during WU creation.
5Microsoft Windows running on an Intel x86-compatible CPU
6Linux running on an AMD x86_64 or Intel EM64T CPU

it is not a surprise that these OCL tools cannot compete in

terms of usability and the functionality they offer with IDE’s

for writing implementations.

Our UML profile approach is currently based on nine

UML metaclasses and Table I lists these with our specified

stereotypes which are used in this paper. With them we can

set-up an automatic code generation (CG) of a BP. Here,

VGP is currently based on 31 stereotypes which are usable

to define BP’s for a single host or a bundle of hosts, where

each host runs different BS’s. Our principles for VGP are

directly based on the BOINC architecture. This means we are

strongly focused on top-down analysis of BOINC’s function-

ality, communication and runtime behavior, i.e. BP’s are seen

as UML packages with embedded UML components for hosts.

BS’s are seen as UML components with functionalities to

outside world. Static configurations are UML properties which

could be defined as UML classes, i.e. configuration of network

interface cards (NICs) has fixed values. Main benefit of our

VGP profile are based on the advantages of UML itself. With

UML it is possible to specify Platform-Independent Models

(PIMs) and Platform-Specific Models (PSMs) of processes and

implementations. Here, we follow this methodology and define

a model with a mix of PIM and PSM:

• On server side elements are fixed for one specific target

platform7 and PSM is used,

• creation and maintaining of workunits or scientific ap-

plications is not related to underlying operating system

(OS) functionalities which means that PIM will be used,

and

• participant’s side could be highly heterogeneous where a

PIM is reasonable.

A. Concept Idea behind Visu@lGrid Profile

As mentioned, our VGP concept is based on BOINC’s

implementation concept itself. Here, we make use of the

opportunity that UML elements could be nested in other ones.

With this in mind, we define a hierarchy with UML for a

BP and each level in the hierarchy must have the potential

to be replaceable. In our view, UML is the best choice to

support this. Two engineering points of views exist: (1) outer

view, and (2) inner view. Clearly, the outer view is the easiest

to understand and it describes the world of participants /

volunteers which are registered to one or more BP’s and is

illustrated on the left hand side of Fig. 1. In contrast, the inner

view is more complex and needs more attention to specify the

infrastructure and behavior on server-side.

B. UML Profile Itself

Fig. 2 shows an overview of all currently defined stereo-

types, how they relate to each other stereotypes, and which

UML metaclasses are extended. Constraints are not included,

they are partly informal specified in Table I. «Projects» is

our root of VGP and could own components extended by

«SAN» and packages extended by «Project». The idea is,

7BOINC supports only Unix platforms.



Fig. 2. VGP stereotypes to restrict the use of UML modeling aspects. This is an overview diagram and Table I names all metaclasses which are extended
by these stereotypes.

that «Project» can be imported and exported any time within

an IDE [8]. BS’s can be added with components extended

by «Service», which must be typed by «ServiceType». The

enumeration does not provide any case of different BS types,

for this purpose enumeration literals Task and Daemon are

added and must be used if supplementary BS’s are imple-

mented, configured and wished to use for one BP. When a

BS needs advanced software or libraries for runtime, they can

be added in different versions by «Software». «Database» is

a specialization of «Service» and can be used to add three

different types of databases: (1) a BP database as shown in

Fig. 1, (2) a science database (SDB) to store computational

results or other datasets, and (3) database replications for the

first and second database type. DB instances can be determined

by two tag-values: isProjectDB and isScienceDB. First one is

true when it is BP’s database, and second one is true when

this it is a SDB. DB replications are associated by replications,

but the mentioned two tag-values are not necessary to specify

while they can be retrieved automatically by check of owner’s

type. SAPP’s can be modeled with components extended by

«Application» and all planned supported target platforms must

be added to targetType. Again, for runtime required software

packages and libraries can be specified.

All hosts within one BP can share data among each other

and for this reason, hosts get ports extended by «PortExport»

and «PortImport» which must be associated to each other

with interfaces extended by «Share». One «PortExport» with a

provided «Share» can be used by more than one «PortImport»,

i.e. a «PortExport» is a global definition within one BP. If

authorized access is wished, both ports must be extended

by «Resource» and associated to a set of «Permissions»

(described later). Same methodology is specified for databases

and database-tables, i.e. «DB» is like mentioned two kind of

ports and «Table» is like «Share». These principles are based

on the UML specification to create components which are fully

replaceable when all ports of another component are equal.

In Fig. 2, stereotypes with a dark-gray background color

are used to define RBAC for one BP. It is not explicit defined

where RBAC should be defined. Few ways are possible: (1)

global definition in «Projects» or (2) fixed definitions for each

«Project». We suggest to define them within «Project». In this

case it would be possible to exchange BP’s more effortless,

otherwise it is necessary to create new RBAC or to duplicate

existing ones. In [4] the authors give an idea of an approach

to define an user control mechanism where each user could

be added to roles and individual resources, our approach

extends this idea. We define that permission rules could only

associated to elements which are extended by «Resource».

Individual users can be defined with classes extended by

«User», roles are defined with classes extended by «Role»,

and a set of permissions are defined with classes extended

by «Permissions». Based on this there is a strict coherence

how associations must be used, i.e. «User» instances must

be associated to «Roles» and these to «Permissions». Finally,

«Permissions» could be associated with elements extended by

«Resource». Fig. 3 shows a first example how our VGP could

be applied to models.

C. Case-Study LMBoinc

Fig. 3 shows some applied stereotypes in a context of a real

BP named LMBoinc. LMBoinc modifies a video stream, i.e. a

video is fragmented in sequences and basic image processing

algorithm are applied to these sequences, some results could



be seen on the project website [9]. WU’s and computational

results within LMBoinc include ZIP-archives (ZIP) with a

specific number of sequences, wherefore the SAPP lmboinc is

associated to one matching «Software» to make zip available

during runtime. LMBoinc uses three hosts on server-side:

• lmboinc-db: This host has the BP database “DBProject”

and SDB “DBScience” installed. SDB is used to store

metadata of computational results, i.e. dimension, filesize,

and filenames of sequences. Furthermore, BP’s database

has an additional replication to speed-up database queries.

• lmboinc-services: This host is composed by four BS’s.

The BA is associated to mentioned SDB and has an

additional association to the third host and stores results

within Webserver’s file system, i.e. when a port is owned

by one BS, additional constraints define which directories

are usable for external use. Here, the exported directory is

below the root directory for web-pages used by this web-

server instance and network file system (NFS) is used

between these hosts.

• lmboinc-web: Because of the provided Webserver com-

ponent, participants just see this host of one BP. As

a consequence, Feeder and Scheduler must be added

to this host, due to the mentioned fact that Feeder is

responsible to refill the shared-memory with information

of next WU’s which are selected for computation. When

one participant requests new WU’s, Feeder will check

the shared-memory and send out informations where

participants could download these WU’s with HTTP

requests. Therefore, necessary ZIP’s must be below Web-

server’s document root directory, to make them accessi-

ble. lmboinc-services owns a BS to create WU’s which

are added to this download area.

In the top-right area three users are added with particular role

associations. Ries is associated to role Admin and has permis-

sions to access all hosts locally and remotely, additionally he

is allowed to handle WU’s for the SAPP lmboinc. The set

of permissions for the association between HandleWork and

Preparator include two operations: createWU and cancelWU.

These two operations are implemented within Preparator and

can be called by users when they get this permission. How this

could be done must be provided by CG. Schroeder owns two

roles, first is Scientist to interact with WU’s as mentioned, and

second role is WebAdmin. WebAdmin allows only to moderate

posts within a BP related web forum. User Grout has only one

role and the permission to moderate forum entries.

As defined in the top-left area, this BP targets Linux

and Windows for 32 bit platforms where lmboinc will be

distributed to. For more supported platforms it is required

to extend the tag-value targetType by additional enumeration

literals of «TargetType».

IV. CONCLUSION

We have proposed VGP, which provides an early approach

to handle system and runtime relevant problems to implement

a PRC project based on BOINC. Our approach is just the

beginning of a MDE process to set-up a complete BP and to

Fig. 3. A BP with three users, three hosts with different added BS and
NIC’s, a SAPP called lmboinc [9], and a RBAC set-up.

handle all necessary administration and maintaining tasks. In

this paper, we have shown how our VGP can be applied to

a real model within a cluster environment, how data can be

shared between this cluster domain, where BS’s are installed,

which SAPP is used and which target platforms are supported.

We have just shown an extract of VGP, due to the fact of the

restriction of upper-page limit of this paper. A draft version

of VGP is available and will be frequently changed [13].

An entire model would contain all design model elements

and specifications to create a whole BP with a scientific

application.

V. FUTURE WORK

Future work will focus on different approaches to make it

possible to define processes for WU creation and maintaining

of failed processed WU’s. In general, currently it is not clear

how we could monitor WU’s lifetime, i.e. how many WU’s

are still in queue or if failed WU’s should be processed again

or not.

Additional work must be done for modeling concepts of

adding and configuring of available ISV applications, e.g.

Scilab. Some work is done and could be integrated in or used

for VGP [8], [10], [11], [12]. As well some effort has to be

spend on how we can define security restrictions on network

traffic on «NIC» elements.

Currently, periodically executed tasks can be added by

«Service» and Task assigned to service type. The period when

one task should be executed is specified by a string value

and is based on the format of the UNIX cron daemon. Future

work will cover an approach how to describe this period with

SysML timing diagrams [16] to make it more predictable.

Asynchronous messages by participants to one BP and vice

versa are currently not supported, but suitable BS’s can be

added with «Service». How to react on incoming messages on

client- and server-side is undefined. Additionally, it is unclear

how we should react on unexpected exceptions, e.g. one BS

is not responding anymore, or if there is not enough space to

store computational results.



TABLE I
EXTRACT OF OUR UML STEREOTYPES WITHIN VGP

Stereotype name; ex-
tended Metaclass

Description Stereotype name; ex-
tended Metaclass

Description

Projects; Package (from
Kernel)

Top-level package which owns all sub-
elements, i.e. hosts or users.

Host; Component (from
BasicComponent)

Specifies one host within a BP, a host owns
some or all BS.

Project; Package (from
Kernel)

One specific BP. NIC; Class (from Kernel) Defines network settings for one host.

SAN; Component (from
BasicComponent)

External host with capabilities to store data,
e.g. WU’s or computational results. Also
known as storage area network (SAN).

OperatingSystem;
Enumeration (from
Kernel)

Unique literals for each planned or sup-
ported operating system, e.g. Linux32,
Linux64, Windows32, or Windows64.

PortExport, PortImport;
Port (from Ports)

Definition of network shared file directories
between hosts.

ShareType; Enumeration
(from Kernel)

Unique literal for each planned or supported
share type, e.g. NFS or SAMBA [14].

Share; Interface (from In-
terfaces)

One specific directory which is ex- or im-
ported. Exported directories are defined as
provided interfaces, otherwise they are de-
fined as required interfaces.

UserAssignment,
PermissionAssignment,
ResourceAssignment;
Association (from Kernel)

Associates users, roles, permissions, and
resources. UserAssignment assigns users to
roles, PermissionAssignment assigns roles
to permissions, and ResourceAssignment
assigns permissions to resources.

User, UserRemote; Class
(from Kernel)

A physical user which has different permis-
sions within one BP described by roles and
permissions.

Software; Artifact (from
Artifacts, Nodes)

Software packages or libraries which are
required during runtime, i.e. BA needs unzip
to extract results out of an ZIP.

Resource; Class (from
Kernel)

An user could only be assigned to resources
when resources have this stereotype.

UserOperation; Operation
(from Kernel, Interfaces)

Operations are executable by users.

ResourceAction; Class
(from Kernel)

Actions which one user in a role or permis-
sion list could call.

Role, Permission; Class
(from Kernel)

Defines roles for users and which permis-
sions these roles include.

DB; Port (from Ports), Ta-
ble; Interface (from Inter-
faces)

Allow BS’s to access database tables. SystemOperation; Opera-
tion (from Kernel, Inter-
faces)

Implementations of system or BS function-
alities, e.g. routines for BV or BA.

Service; Component
(from BasicComponents)

BS’s on one host, e.g. Feeder and Transi-
tioner.

ServiceType; Enumeration
(from Kernel)

Type of a BS, e.g. Feeder or Transitioner.

Database; Component
(from BasicComponents)

BOINC’s master/science database and op-
tional replications to increase DB perfor-
mance.

ConnectorShare; Connec-
tor (from BasicCompo-
nents)

Connects exported shares with imports and
vice versa. An export could be used by
multiple imports.

Application; Component
(from BasicComponents)

Describes one SAPP, which is used for
computations.

Platform; Enumeration
(from Kernel)

Literals for each target platform, e.g. Linux
32 bit or Windows 32 bit.

REFERENCES

[1] D. P. Anderson, C. Christensen, and B. Allen. “Designing a Runtime
System for Volunteer Computing.” in Proc. ACM/IEEE SC, 2006, Article
No. 126

[2] T. Baar, D. Chiorean, A. Correa, M. Gogolla, H. Hußmann et.al. “Tool
Support for OCL and Related Formalisms - Needs and Trends“ in
Lecture Notes in Computer Science, vol. 3844. J.-M. Bruel, Ed. Berlin
Heidelberg: Springer-Verlag, 2006, pp.1-9

[3] O. Baskova, O. Gatsenko, G. Fedak, O. Lodygensky, and Y. Gordienko.
”Porting Multiparametric MATLAB Application for Image and Video
Processing to Desktop Grid for High-Performance Distributed Comput-
ing,“ presented at the 25th Int. Supercomputing Conf. (ISC), Hamburg,
Germany, 2010

[4] Ç. Cirit and F. Buzluca. ”A UML Profile for Role-Based Access
Control,“ in Proc. ACM SIN’09, 2009, pp. 83-92

[5] ”Multiphysics Modeling and Simulation Software – COMSOL.“ Inter-
net: http://www.comsol.com [Oct. 29, 2011]

[6] D. Werthimer, J. Cobb, M. Lebofsky, D. Anderson, and E. Korpela.
”SETI@HOME - massively distributed computing for SETI”. Comput-
ing in Science and Engineering, vol. 3, pp. 78-83, Jan. 2001

[7] A. C. Marosi, Z. Balaton, and P. Kacsuk. “GenWrapper: A Generic
Wrapper for Running Legacy Applications on Desktop Grids,” in Proc.

IEEE-IPDPS, 2009, pp. 1-6

[8] C. B. Ries, C. Schröder, and V. Grout. “Generation of an Integrated
Development Environment (IDE) for Berkeley Open Infrastructure for
Network Computing (BOINC),” in Proc. SEIN, 2011, pp. 67-76

[9] C. B. Ries and C. Schröder. “Public Resource Computing mit Boinc.”
Linux-Magazin, vol. 3, pp. 106-110, March 2011. Internet: lm-
boinc.sourceforge.net

[10] C. B. Ries and C. Schröder. “ComsolGrid - A Framework For Per-
forming Large-Scale Parameter Studies Using Comsol Multiphysics and
Berkeley Open Infrastructure for Network Computing (BOINC),” in
Proc. COMSOL Conf., Paris, 2010

[11] C. B. Ries, T. Hilbig, and C. Schröder. “A Modeling Language Approach
for the Abstraction of the Berkeley Open Infrastructure for Network
Computing (BOINC) Framework,” in Proc. IEEE-IMCSIT, 2010, pp.
663-670

[12] C. B. Ries. “ComsolGrid - Konzeption, Entwicklung und Implemen-
tierung eines Frameworks zur Kopplung von COMSOL Multiphysics
und BOINC um hoch-skalierbare Parameterstudien zu erstellen.” M.Sc.
thesis, University of Applied Sciences Bielefeld, Germany, 2010.

[13] C. B. Ries. “UML Profile for Visu@lGrid (draft).” Internet:
www.visualgrid.de/research/drafts/UMLProfileVG-draft.pdf

[14] “Samba – opening windows to a wider world.” Internet: www.samba.org
[Oct. 29, 2011]

[15] Object Management Group. ”OMG Unified Modeling Language (OMG
UML) Superstructure.“ formal/2010-05-05, May, 2010.

[16] Object Management Group. ”OMG Systems Modeling Language (OMG
SysML).“ formal/2010-06-01, June, 2010

[17] Object Management Group. ”OMG Profile For MARTE: Modeling And
Analysis Of Real-time Embedded Systems.“ Version 1.1, June, 2011

[18] Object Management Group. ”Object Constraint Language.“ Version 2.2,
Feb., 2010

[19] ”Setting up a BOINC server.” Internet: boinc.berkeley.edu/trac/
wiki/ServerIntro, July 25, 2011 [Oct. 29, 2011]


